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Abstract 

Variation of the diffraction conditions for neutrons in a 
rotating crystal frame is discussed. It is shown that the 
angle of deviation from the Bragg position varies with a 
rate equal to double the angular velocity of the crystal. 
This makes it possible to calculate the diffraction power 
for type-I Zachariasen mosaic crystals and then to 
obtain a solution of the Darwin equation for a rotating 
crystal slab with zero absorption. Further con- 
siderations refer to the space distribution of diffracted 
beam intensity. It is shown that, if a suitable experimen- 
tal configuration is adopted, the structure factor 
modules can be determined from the intensity depen- 
dence on the angular velocity, and the result is 
independent of the mosaic-spread distribution in the 
sample. Results of experiments are presented. 

I. Introduction 

In recent years a number of papers discussing neutron 
diffraction by moving crystals have been published 
(Lowde, 1957; Brockhouse, 1961; Shull & Gingrich, 
1964; Meister, 1967; Shull, Morash & Rogers, 1968; 
Buras, Giebukowicz, Minor & Rajca, 1970; Buras et 
al., 1972; Buras & Giebultowicz, 1972; Buras & 
Kjems, 1973). A change in neutron wavelengths due to 
the Doppler effect and changes in reflection intensity 
have been observed. The Doppler effect may also play 
an important role in the process of diffraction in 
vibrating crystals (e.g. Galociova et al., 1970; Buras, 
Giebuttowicz, Minor & Rajca, 1972; Mikula, Michalec, 
Chalupa, Sedl&kov& & Petr~ilka, 1975). As was 
noticed by Brockhouse (1961), the rotation of a crystal 
at considerable speed may cause a decrease in 
extinction. This effect was discussed quantitatively by 
Buras, Giebuttowicz, Minor & Rajca (1970) who 
showed that the diffraction conditions vary as the 
neutron travels through the crystal, and that this is due 
to two effects; the 'geometrical' rotation and the 
Doppler effect. A formula describing the dependence 
P(¢o) of the integrated intensity on the angular velocity 
of the crystal has been derived. In a more recent paper 
(Buras et al., 1972), a method for direct determination 
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of absolute values of the structure factors IFhktl by 
fitting the theoretical dependence P(¢o) to the ex- 
perimental points was advanced. However, this method 
gives correct values of IFhktl only if the assumed 
mosaic distribution function is in good agreement with 
the real one. 

The present paper gives a more detailed discussion of 
the variation of diffraction conditions in rotating single- 
crystal frames. The solution of the Darwin equations 
(e.g. Zachariasen, 1967) for spinning single-crystal 
slabs is given and it is also shown that the extinction 
factor can be found experimentally. Analysis of the dif- 
fraction process shows that a neutron 'sees' in a 
rotating crystal the reflecting and transparent zones. 
This fact makes it possible to draw some conclusions as 
to the space distribution of the reflected beam intensity. 
It has been shown that if a suitable experimental confi- 
guration is applied, the observed intensity may be 
independent of the mosaic-spread distribution in the 
sample. Thus, IFhktl as determined by fitting the 
theoretical relation P(w) to the experimental points 
may be more accurate than when it is estimated by the 
method proposed earlier (Buras et al., 1972). 

11. The role of the Doppler effect in the diffraction 
process in rotating single crystals 

The specimen velocity V 'seen' by the neutron on its 
path through the crystal is varying continuously, so the 
wave vector k in the moving frame changes due to the 
Doppler effect according to the formula 

m 
k = - -  (V/-- V), (1) 

h 

where m is the neutron mass, h is Planck's constant and 
V i is the neutron velocity in the laboratory system. The 
angle between k and the reflecting plane also varies 
continuously as a result of the crystal rotation. The 
effective variation of the deviation from the Bragg 
position due to these two effects can be found from 
simple calculations based on the modified Ewald 
construction for a moving lattice (Buras & 
Giebuttowicz, 1972). Fig. 1 shows this construction 
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executed under the assumpt ion that  the incident angle q) 
in the spinning crystal  system is close to the Bragg 
angle 7. The Bragg angle 7 can be found by drawing an 
arc of  radius U~ from point A to the point of  inter- 
section with the bisectrix of  vector (h /m)x .  The angle of  
deviation f rom the Bragg position is defined as: 

~ =  7 - -  q~. (2) 

Thus 

sin y = sin (e + 4o) ~_ sin 4o + ~ cos ~0, (3) 

since only small values of  e are taken into consider- 
ation. As can be seen f rom Fig. 1, the following 
formulae can be derived: 

sin 4o = ( V  i sin Oi + V cos /3) /U i, (4) 

cos 4o = ( V  i sin 0 i + V s in /3 ) Iu  i, (5) 

sin 7 = h r / 2 m  U s = V o / U  i. 

F r o m  (3) to (6) we get 

(6) 

Vo - Vi sin 0i - V cos/7 
= . (7) 

V i cos Oi + V sin/3 

Let us consider the rotat ing specimen in the form of a 
crystal  slab with the reflecting plane perpendicular  to 
the crystal  face. The axis of  rotat ion is parallel to the 
crystal  face and perpendicular  to the experimental  
plane. 

The x y  coordinate system shown in Fig. 2 is defined 
as follows; the x axis is parallel to the velocity vector of  
the incident neutron V~ and the y axis is perpendicular 
to the reflecting plane. The angle between the x and y 
axes is not fixed. 

Let the considered neutron be at a certain moment  t 
at a certain point A. The radius r at point A is 

r = x cos Oi/cos gt = - - x  cos Oi/cos/3, (8) 

/Ta'" " \ //," 

r/6 
h ~ r " -  

m 

Fig. 1. Transformation of the velocity vector V t from the 
laboratory system into the crystal system for the incident angle ~0 
close to the Bragg angle 7. x is the reciprocal-lattice vector. 

because gt = zr - / 7 .  The rotational speed being o0, the 
crystal  velocity at point A is 

V = I o~ x ~1 = - co x cos Oi/cos/3.  (9) 

Hence we get the following expression for e; 

V o -  V i s in  0 i + o ) x c o s  0 i 
e = (10) 

V i cos 0 i + V sin/7 

The variat ion of  0~ is described by 

0 i = Oio --  o) (t --  to), (11)  

where t o is the time at which the neutron enters the 
crystal  and 0~o is the value of  angle Oi corresponding to 
t 0. If  V i >> V (usually V < 10 m / s ,  V~ > 1000 m/s),  then 
the time dependence of  coordinate  x is given to a very 
good approximat ion  by the equation 

x = V i ( t -  t o) + x o. (12)  

Then (11) becomes 

Oi = Oio - co(x  - X o ) / V  ~, (13) 

and,  taking into account  that  for neutrons entering the 
crystal  at various times 0io = cot0, 

e =  { V o - Vi sin [cot 0 - o ) ( x -  X o ) / V  i] 
+ cox cos[oot o -  o ) ( x -  Xo) Vi]} 
x { V ~ c o s [ c O t o - ~ ( X - X o ) V ~ ]  + V s i n f l } - k  

(14) 

Equat ion (14) describes the variat ion of  the angle of  
deviation f rom the Bragg position with t o and x. V sin fl 
is the only quant i ty  in (14) which depends on x but it is 
small compared  with the other terms in the 
denominator .  Thus,  the deviation from the Bragg angle 

Fig. 2. The xy coordinate system for a spinning single crystal. The 
x axis is parallel to the velocity vector V i of the incident neutron, 
the y axis is perpendicular to the reflecting plane, V is the velocity 
vector of the crystal at point A. 
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is, with a good approximation, the same for all neutrons 
which at a given moment are at the same depth from 
the crystal surface. By differentiating (14) we get 
(v~>> v) 

Be 2o9 [ t e Bv sin f l /Bx \  
-- ~ 1 + - tan Oi + 

B x V i 2 ~ -~o s ~ i .]. (15) 
I " / 

As stated above, these calculations refer only to angles 
close to the Bragg position, and thus the terms 
including t are small compared with unity, and 

B e / B x =  203/V e (16) 

If we take into account (12), we can write 

Bt/Bt = 203, (17) 

which means that the variation in t is twice as fast as 
the crystal rotation. This result can be explained as the 
summation of two effects; the true geometrical effect 
associated with the variation of angle Oi, and the 
Doppler effect which varies as the neutron passes 
various parts of  the rotating crystal. This is discussed in 
greater detail in the Appendix. 

Considering (16) and (17), we can write 

e = t o + 2 w ( x - -  Xo)/V i, (18) 

o r  

t = to + 2 w ( t -  to), (19) 

where e 0 = t(to) is the value of e at the moment when 
the neutron enters the crystal. From (14) it can be seen 
that for neutrons entering the crystal at different times 
t 0, t 0 is given with very good approximation by the 
equation 

to = OOto. (20) 

Finally, 

e = 03t 0 + 2 0 3 ( x -  Xo)/V i. (21) 

I lL Ext inct ion in a rotating single crystal  

The diffraction power 

In the case of neutron diffraction in a Zachariasen 
type-I mosaic crystal (Zachariasen, 1967), the diffrac- 
tion power a is 

o(e) = Q W(e), (22) 

where Q = (231Fhktl Z/sin20)N z, 2 is the neutron wave- 
length, F the structure factor, N the number of unit cells 
per unit volume and W(e)  the distribution function of 
mosaic-block orientation. In this case the angle e. is 
defined as the deviation from the Bragg angle for the 
mean orientation of mosaic blocks. In a rotating single 
crystal, the value of e, and hence the diffraction power, 

changes continuously as the neutron passes the regions 
of different V. From (21) and (22), a is given for 
rotating crystal slabs by the equation 

a = Q W[ wt o + 2 w ( x -  Xo)/Vt]. (23) 

This formula describes correctly the variation of a until 
a reflection occurs. 

Let us assume that the neutron encounters a mosaic 
block in which the deviation A from the mean orien- 
tation is at this moment  equal to e and a reflection 
occurs. The value of e at the moment of reflection is 

e r = A = oot 0 + 203(x r -- Xo)/Vi, (24) 

where x r is the x coordinate of the reflecting block. 
Directly after the reflection e = - e r  (see Fig. 3), and e 
varies according to the equation 

Be 
t t  = - - t  r -+- ~ X  ( X '  - -  X ; ) ,  ( 2 5 )  

where x', and x '  are the coordinates of the mosaic block 
and the neutron, respectively, i n  the new coordinate 
system x ' y '  in which the x '  axis is parallel to the 
velocity vector of the scattered neutron V,, and y '  is 
antiparallel to the y axis (see Fig. 3). Finally, according 
to (11) and (24), we obtain for the reflected neutron 

209 
e' = - e r - - - ~  ( x ' -  x'). (26) 

Taking into consideration that V,~ Vi, we can assume 
with a good approximation that V, = V i and 0 r = 0 i = 
0, where 0 is the Bragg angle for a stationary crystal. 
Let z be a new coordinate axis parallel to the reflecting 
plane and lying in the experimental plane as shown in 
Fig. 4. Then, 

z = x/cos 0 = x ' / c o s  0, (27) 

B 11' 

y 

¥ 

*,i,.- 

Fig. 3. Neutron reflection in a spinning single crystal: AOB is the 
neutron path; a, a~ are reflecting planes; y and y' are parallel to 
the reciprocal-lattice vectors corresponding to reflections from 
both sides of the plane. 
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and according to (21) and t,27), we get for the neutron 
entering the crystal 

2 o 9 ( z -  Zo) 
e = cot o + , (28) V~ cos 0 

and for the reflected neutron according to (24), (26) 
and (27) we have 

2o9 
e = --cot 0 - -  ( z -  z0), (29) Vi cos 0 

where z 0 is the z coordinate of the crystal surface. Let 
W be a symmetrical function. Then, according to (2), 
(28) and (29), (23) takes the form 

[co 2o9(z - z0) ] 
a(Z, to)= Q W to+ (30) 

Vi c o s  0 ' 

and describes the variation of the diffraction power for 
the incident as well as for the reflected neutrons. 

Solutions o f  the Darwin equations 

Using Zachariasen's  notation (Zachariasen, 1945) 
the Darwin equations for stationary crystals with zero 
absorption generally are 

8tz - - a l o  + aL 

01 
- -  - - a I  + aI  o, 

8t 2 

(31) 

where a is constant, I 0 and I are the intensities of the 
incident and diffracted beams, respectively, and t I and 
t 2 are coordinates measured parallel to the incident and 
diffracted beams. In general, I and I 0 are functions of 
the positions within the crystal. For the crystal slab 

Ki ~ IKr z 

x 
ol 

Fig. 4. Spinning crystal slab; the axis of rotation is perpendicular to 
the plane of the figure. The x axis is parallel to the wave vector of 
the incident neutron, the z axis is parallel to the reflecting plane. 

(symmetrical Laue case) only the z coordinate can be 
used and (31) reduce to 

810 a a 
- -  - I o + - I ,  
8z y y 

(32) 
c~I a a 
. . . .  I +  - I  o, 
~z 7 Y 

where y = cos 0. 
The diffraction power  for the rotating slab is not 

constant, as it is a function of the z coordinate. The 
solution of (32) for such a case has been given by Buras 
et al. (1972), 

ZI 

,7  = ½~70 (0) { 1 - exp [ ( -2 /y ) f  adz]}. (33) 
Zo 

The total power of the diffracted beam recorded in unit 
time can be calculated by integrating (33). Taking into 
consideration (30), we find that the total power of the 
diffracted beam is 

P - ~  ~ f {1-exp---co o W ( o g t ° + O d ~ d t ° '  

(34) 

where C0 = 2o9(z] - Zo)/V i cos 0. 
Fig. 5 shows a typical plot of the dependence of the 

integrated intensity P(o9) on the angular velocity co. 
For o9 ~ 0, (34) takes the form 

f2( [2zlQ ]) 
P(o9 --. 0 ) =  _:2_14n ~ 1-- exp cos 0 W(o9t0) d(o9to) , 

(35) 
which is in agreement with the Zachariasen formula for 
the Laue case for a stationary crystal. 

For co --, ~ we obtain 

P(o9 -, ~ )  = I o Q z l /2n  cos 0. (36) 

This result is the same as the one obtained from a 
kinematic approximation when the extinction effect is 
neglected. The P(m -, O)/P(o9 --, ~ )  ratio gives the 

/ 

v 

Fig. 5. Typical plot of the integrated intensity, P, versus angular 
velocity, w. 
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extinction factor y defined by Zachariasen. The 
'saturation' of the measured intensity P(og) for typical 
values of Q and V i is obtained for ~o = 103 t o  105 r/min, 
which are available in the laboratory. This means that 
the extinction factor for the stationary sample can be 
obtained experimentally by rotating the crystal and 
measuring the P(o9 --, O)/P(o9 --, oo) ratio. 

Reflecting zones 
When calculating the extinction corrections in 

stationary single crystals, the mosaic distribution func- 
tion should be well defined. So far, Gaussian or 
Lorentzian mosaic distribution functions have usually 
been assumed. In the further considerations of the 
present paper, the only assumptions made are that the 
mosaic distribution function is symmetrical, W(A) = 
W(-A) ,  and that the maximum inclination of the 
mosaic block with respect to the mean orientation has a 
certain value Area x. These assumptions should be 
regarded as an approximation only, which optionally 
may be accurate. The Bragg reflection may occur when 
the deviation from the Bragg angle satisfies the 
condition I el < Ama x. Considering (28) and (29) we get 

I ogt 0 + 2o9(z -- z0)/V i cos 01 < Ama x. (37) 

This means that a neutron entering the crystal at a 
given time t o may be reflected in a certain zone for 
which the z coordinate satisfies (37). This inequality is 
illustrated in Fig. 6(a). The solid lines e(z) show the 
dependence of e on the z coordinate for two neutrons 
which enter the crystal at two different times t01 and t02. 
The slope of the e(z) lines is proportional to the angular 
velocity co. The reflecting zones for these neutrons, 
determined by the points of intersection of the e(z) lines 
and dashed lines I~1 = Zimax, are shown in Fig. 6(b). It 
should be noted that the location of the reflecting zones 
in the crystal depends on the entrance time t o . 

The width of the reflecting zones decreases with 
increasing angular velocity o). This effect can be 
observed in Fig. 6(a) if the slope of the e(z) lines 
increases. 

Considering (37), it is easy to show that for speeds of 
rotation not greater than o90' where 

o90 = Area x V 0 cos OlD (38) 
(D being the thickness of the crystal), the reflecting 
zones are limited by the crystal surface on one side or 
on both sides. If o9 > o90, the reflecting zones may be 
limited by the crystal surface on one side or may lie 
entirely inside the rotating crystal. For the sake of 
convenience they are hereafter referred to as boundary 
and internal reflecting zones, respectively. 

Space distribution o f  reflected beam intensity 

(a) Analytical approach. The fact that neutrons on 
their way through the rotating crystal meet transparent 

and reflecting zones may cause a space distribution of 
the diffracted beam which is not uniform. 

In principle, it is possible to find this distribution by 
solving the Darwin equations (32), taking into account 
the variation of the diffraction power a; however, even 
for a stationary crystal this is a difficult mathematical 
problem (Zachariasen, 1967; Becker & Coppens, 
1974). If only the neutrons scattered by the internal 
reflecting zones are taken into consideration the 
problem becomes simpler. 

Let us assume that the width of the incident neutron 
beam can be neglected when compared with the crystal 
dimensions (see Fig. 7). The width of the scattered 
beam measured along the ~ axis parallel to the t~ axis 
(see Fig. 7), is D/cos 0. The maximum width of a 
boundary reflecting zone may be calculated from (37): 

Azma x = Ama x V l c o s  0/o9. (39) 

If o9 > 2o90, then Zma x is smaller than half the sample 
thickness D/2. Thus, the neutrons registered in the 

I A m a s  

I 
, / 

Zo! 

t__ - ~ - ~ 7 -  

~ t°2 t°l 

/ z,l_ ,z 
I 

_ ~ _ J  

(a) 

~ " J J / f  J J "  ' V / / / / ~  
L~" J f / f  J J  

I,,, / / i / /  / 

I,," l /  / /  / J 

I ~ f J J i f /  

(b) 

Fig. 6. Graphical illustration of inequality (37). (a) The depen- 
dence of ~ on the z coordinate for two neutrons which enter the 
crystal at two different times t0~ and t02; (b) the corresponding 
reflecting zones for these neutrons. 
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central part of the scattered beam (~', ~"), whose width 
is equal to 

~' - -  ~" = D/cos 0 -  2AZmax/COS 0, (40) 

were diffracted in the internal reflecting zones only. 
Taking into consideration (30), Darwin equations 

(32), describing the diffraction in every internal 
reflecting zone, may always be put into the same form. 
Consequently, the intensity distribution function E(O 
within the interval (~', ~") should be constant. 

The contribution to the total reflected beam intensity 
I(to)dt o due to neutrons which enter the crystal in a 
time interval (t 0, t o + dt 0) may be calculated from (33). 
Since the W(A) function is normalized to unity, i.e. 

+Amax 

f W ( A ) d A =  1, (41) 
--'(J max 

one can find on the basis of (34) and (37) that for the 
internal reflecting zones 

I(to) dt 0 = ½,70 (0) [ 1 - exp ( -  QV/co)]. (42) 

Hence we find that the intensity distribution function is 
proportional to 

E(~) ~ co[1-  e x p ( -  QV/w)]  (43) 

for ~ ~ (~', ~"). 
It is more complicated to find E ( ~  for other values 

of ~. However, it can be shown (Giebultowicz, 1975) 
that the shape of the E ( ~  function is characterized by 
two maxima on both sides of the central plateau. 

(b) Numerical calculations. A computer program 
for more detailed calculations of the E(~) function was 
used. The crystal was divided into a number of rect- 
angles, having the coordinates j , k  (see Fig. 8). The 
dimensions of each rectangle should be small enough to 
allow the change of e within the rectangle to be 
neglected, thus assuming that it is constant. 
Assumptions were also made that the incident neutron 
beam was ideally collimated, monochromatic and 

Fig. 7. Neutron diffraction in a spinning single crystal when there is 
a slit in the path of the incident neutron beam. The dashed area 
represents the reflecting area. The dashed lines illustrate the 
boundaries of the reflected neutron beam. 

entered the crystal at one point and that the reflection 
occurred every time in the center of a rectangle. The 
calculations were performed column by column, 
starting from j = 1 (Fig. 8). The following system of 
recursion equations was used: 

IR( j + 1, k + 1 ) = p j l t ( j , k ) +  ( 1 - - p j ) l R ( j , k ) ,  

l l (  j + 1, k -  1 )=p j l t ( j , k )  + (1 - p ) I t ( j , k ) ,  
(44) 

where Ii(j,k), IR(j,k) are the intensities of the beams 
parallel to the direction of incidence and reflection, 
respectively, within the j ,k  rectangle and pj is the 
probability of reflection for column j.  Since the 
reflection power is assumed to be constant, the formula 
for stationary crystals (Zachariasen, 1967) may be 
used; 

pj = ½ [ 1 -- exp(-- 2trj D/n cos 0)1, (45) 

where n is the number of columns and trj is the dif- 
fraction power for the j th  column according to the 
equation 

trj = QW[wt  o + 2 w D ( j -  1/2)/nV l cos 01. (46) 

It is easy to show that (44) convert to Darwin equations 
(32). 

From the above calculations, a series of intensities 
IR(n + 1, n), IR(n + 1, n -  2) . . .  IR(n + 1, --n + 2) has 
been obtained. This series determines the intensity 
distribution of the reflected beam due to neutrons which 
enter the crystal at one given moment t o . Thus, the 
procedure should be repeated for a set of different times 
t o which is analogous to integration over t o in the analy- 
tical approach. The results of numerical calculations 
are in good agreement with the conclusions of the 

3 ..,,,< 

,,,<- X 

"' "<  X 

4< 

X 
X _  

_ X 
><_ 

X -,,.( 
-,,< 

J 

J 

f 

J 

J 

j----1 2 3 - .  n 

Fig. 8. Neutron diffraction model for a spinning single crystal; j ,k 
are coordinates of the rectangular zones into which the crystal 
has been divided. The lines with arrows represent assumed 
neutron oaths during the diffraction process. 
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analytical approach. As an example of these results, the 
E ( 0  functions calculated for different speeds of 
rotation are shown in Fig. 9. The value of 09 o for the 
input data used was 1000 r/min, so the central plateau 
did not exist at 09 = 1500 r/min. 

IV. Experiment 

The experimental measurements were performed on the 
TKSN-420 neutron spectrometer (Sosnowska et al., 
1979) at the EWA reactor in Swierk. A pyrolytic 
graphite monochromator was used and the collimation 
of the incident beam was 30' of arc. There was no 
collimator between the sample and the detector. A 
standard BF 3 neutron counter was used and its 
entrance window (~ = 38mm) was located at a distance 
of 1.2 m from the sample. The higher-order reflections 
were cut off by a time-of-flight gate in the detector 
circuit. The rotation speed of the motor driving the 
crystal could be varied continuously from 600 to 
12 000 r/min and it could be stabilized within this 
range with high accuracy, controlled by an RC gener- 
ator. Bismuth single-crystal plates of thickness 8-10 
mm were used as samples. The reflecting planes (1 i0) 
were perpendicular to the crystal surface and the [ 111 ] 

I v  

e,n 

(~)  1500 r/rain 

J 

I 

J 

J 

3000 r/min 

6000 r/min 

v 

12000 r/min 

o o.~r 5. 
Fig. 9. Intensity distribution function E(0  obtained numerically for 

different speeds of rotation of the crystal. 

axes were parallel to the motor axis and perpendicular 
to the experimental plane. 

The incident beam was formed in a 1 mm cadmium 
slit placed between the collimator and the sample. A 
second slit of the same width was placed between the 
sample and the counter (see Fig. 10). Measurements of 
two types were made. In the first type the intensity 
distribution of the scattered beam was determined. In 
order to make the conditions of neutron registration 
constant, the scan was achieved by shifting the sample 
together with the motor step by step parallel to the 
incident beam instead of shifting the second slit. The 
rotation speed was constant during the whole scan of 
the scattered beam. In the second type the P(o~) 
dependence was investigated, both for the whole 
scattered beam without the second slit and for the 
central part of the scattered beam (the second slit 
placed in the center of the beam). 

V. Results 

In the preliminary measurements, the intensity distri- 
bution of the scattered beam was determined for a 
number of bismuth plates. The reflections 1 i0 and i 10 
were measured separately (for two positions of the 
plate). It appeared that in some cases the distributions 
for these two positions differ strongly, as is shown in 
Fig. 11. The most probable explanation of this fact is 
that the mosaic spread is not uniform within the whole 
crystal volume, as has also been observed earlier 
(Freund & Schneider, 1972). This supposition was 

I Cd slit 

~le 

Shifting 

mechanism 

Cd slit 

Counter 

Fig. 10. Diagram showing the principle of the experiment. 
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confirmed by the results of calculations obtained using 
the computer program described above when a 
'gradient' of the mosaic spread half-width was 
assumed. Further measurements were made for 
crystals in which those anomalies were not observed. 
The space distributions of the reflected beam were 
determined for various speeds of rotation and wave- 
lengths. Fig. 12 shows the experimental results for 09 = 
3000 and 5400 r/min, and 2 = 1.31 and 2.49 A. The 
results of computer calculations are presented in the 
same figure. The input data corresponded to the experi- 
mental conditions, and a Gaussian mosaic spread was 
assumed. Finite widths of the cadmium slits were also 
taken into account in the computer program. The 
measurements made for other wavelengths show 
similar agreement between experiment and calcu- 
lations. 

In the measurements of the second type, the 
reflection intensity was investigated as a function of the 
speed of rotation, both for the whole diffracted beam 
and for its central part. In Fig. 13, the results of these 
measurements are compared for one of the bismuth 
crystals. As is seen, the experimental relations P(og) in 
these two cases are different. Curve 1 plotted in accor- 
da,ace with (34) is in good agreement with the 
experimental points P(og) for the whole scattered beam 
(crosses). The variation of the intensity for the 
scattered beam center is described correctly by (43) for 
09 values greater than about 3000 r/min (curve 3). This 
value is in agreement with the estimated value of 09 o 
[equation (42)1. Formula (43) is incorrect for 09 < 2090, 
but the theoretical relation P(oJ) in this range can be 
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Fig. 11. Intensity distribution E(O obtained experimentally for 
reflection 1 [0 (a) and f I0 (b) for the Bi crystal. 

found numerically using the computer calculations de- 
scribed above (see curve 2 in Fig. 13). 

Equations (44) were tested by the least-squares fit to 
the experimental results obtained for different bismuth 
crystals. The structure factor IFhu~l was the fitted 
parameter. The results are summarized in Table 1. 
Some of the samples were not slabs but single-crystal 
cylinders with axis parallel to the axis of rotation. 
However, for the applied experimental geometry this 
difference was not significant. 
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Fig. 12. Distribution function E(O obtained experimentally and 

numerically for (a) ;t = 1.31 A, (b) 2 = 2.49 A and 09 = 3000 
and 5400 r/min. 
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Fig. 13. Dependence of the integrated intensity on the angular 
velocity P(u.O for the whole scattered beam (crosses and curve 1) 
and bounded by cadmium slit (full circles and curve 2). Curve 3 
is the plot representing formula (43). 
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Table 1. Comparison of theoretical and experimental values of IFhkll for Bi and Zn 
single crystals 

D(mm) Reflection 

I Bi 10 1 [0 
121 

II Bi 17 1 l0 
121 

III Bi 29 1 l0 
IV Bi 29 1 l0 
V Bi 29 1 l0 

Zn 29 100 

Extinction I F~I I F~I Error 
factor y experimental theoretical 

experimental value value I F E I -- I Frl 
value x 10 -12 x 10 -12 I Frl 

0.064 1.61 1-62 1 
0.222 1.31 1.45 10 
0.054 1.62 1.62 1 
0.189 1.32 1.45 9 
0.125 1.52 1.62 6 
0.079 1.56 1.62 4 
0.073 1.52 1.62 6 
0.186 0.52 0.55 6 

x 100% 

V l .  C o n c l u s i o n s  

It has been shown that it is possible to explain the 
mechanism of neutron diffraction in Zachariasen type-I 
rotating crystals on the basis of the theory of the 
Doppler effect and theory of extinction in stationary 
crystals. The theoretical calculations seem to be in 
good agreement with the experimental results concern- 
ing the increase in the diffracted beam intensity for 
rotating crystals and its space distribution. 

As has been shown, measurement of the P(oJ) 
function enables, when the two slits are applied, deter- 
mination of the value of IFI by direct fitting of the 
theoretical formula to the experimental points. The 
error in the presented results (each of them obtained for 
a single reflection) is no higher than 10% although it 
decreases with increasing extinction. Moreover, the 
results of fitting are not sensitive to the assumption of 
any type of function describing the mosaic spread 
distribution. Thus, the described measurement tech- 
nique may present a useful tool for obtaining infor- 
mation from reflections with high secondary extinction. 
The investigation of the space distribution of the 
scattered beam supports the earlier observation that the 
mosaic structure shows considerable fluctuations in 
many crystals. Therefore, the assumption of the 
isotropic mosaic structure for a single crystal should be 
carefully examined. In this paper only the Zachariasen 
type-I crystals were considered. For the rotating type-II 
Zachariasen crystals, some elements of the presented 
model should be reconsidered, account being taken of 
recent papers (e.g. Becker & Coppens, 1974). 

A P P E N D I X  

As was said in our comment to formula (17), the angle 
of deviation from the Bragg position varies under the 
influence of two effects: the geometrical effect and the 
Doppler effect. It is quite natural that the contribution 
of the former effect to the resultant value of de/dt is 
equal to the angular velocity 09 of the crystal, but the 

reason for the contribution of the Doppler effect also 
being equal to 09 may not be obvious. A simple 
explanation of this fact may be given on the basis of the 
Ewald construction for moving-crystal lattices (Buras & 
Giebultowicz, 1972). It follows from the above paper 
that the fulfilment of the Bragg condition in a moving 
crystal depends on the projection length of the neutron 
velocity vector U i in the moving-crystal frame on the 
vector (h/m)x. The vector U i varies under the action of 
the acceleration a' in the moving frame. In a rotating 
frame the vector a' is described by the known formula 

a' = - -2to  x V i + ¢o x (co x r), (A 1) 

where the first term is the Coriolis acceleration and the 
second term is the centripetal acceleration. Taking into 
account the values typical for an experiment (usually 
oJ r is not greater than 10 m/s and V l is of the order of a 
thousand m/s), we can neglect the role of centripetal 
acceleration. Thus, the variation of e can be considered 
as a consequence of the Coriolis acceleration. 

The velocity of a neutron in the rotating frame is 

Ui=  V i - - ~  × r. (A2) 

i AV ", b 

V \ 

i I / / , S I  .... 
Fig. 14. Construction showing the 'geometrical' and 'Doppler' 

components of  the variation of the angle e. The principle of  the 
construction is the same as for Fig. 1. The dashed lines 
correspond to the inclined position of the crystal due to its 
rotation within a small time interval At. 
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The geometrical effect is associated with the 
variation of V~ (which changes its direction only in the 
rotating frame), while the Doppler effect is associated 
with the variation of to x r. A simple calculation in the 
rotating frame coordinates gives 

dVi/dt  = - t o  x V i (A3) 

and, on the grounds of the approximation made above 
we get 

d ( - to  x r) 
- co x V ~ +  to x ( .  x r) ~ _ - .  x vi. 

dt (A4) 

The above results show that the variations of V i and 
to x r contribute equally to the Coriolis acceleration. 
This explains why the effects are equal. 

Fig. 14 presents another simple explanation of the 
problem. The figure shows the 'geometrical' and the 
'Doppler' components of the total variation de. The 
value for At 6 is obviously 

At  o = coat. (A5) 

To find Aeo, let us consider the variation of the crystal 
velocity 'seen' by the neutron 

AV = to × Ar = co x V i At. (A6) 

This means that A V I  V i and on the grounds of the 
approximations made earlier ( V  ~ Vi; U i ~_ Vl), we can 
also assume AV_L U i. Hence, the expression obtained 
for Aez) is the same as for Aec, viz 

A t  o = o~V i A t l U  i ~ mat. (A7) 
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